Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides
نویسندگان
چکیده
Polyclonal antibodies directed against ribophorins I and II, two membrane glycoproteins characteristic of the rough endoplasmic reticulum, inhibit the cotranslational translocation of a secretory protein growth hormone into the lumen of dog pancreas or rat liver microsomes. As expected, site-specific antibodies to epitopes located within the cytoplasmic domain of ribophorin I, but not antibodies to epitopes in the luminal domain of this protein, were effective in inhibiting translocation. Since monovalent Fab fragments were as inhibitory as intact IgG molecules, ribophorins must be closely associated with the translocation site and, therefore, are likely to function at some stage in the translocation process. In all cases, the antibodies that inhibited translocation also caused a significant reduction in total protein synthesis and treatments that neutralized their capacity to inhibit translocation also prevented their inhibitory effect on protein synthesis. This would be expected if the antibodies blocked the membrane-mediated relief of the SRP-induced arrest of polypeptide elongation. The antibodies were effective only when added before translocation was allowed to begin. In this case, they prevented the targeting of active ribosomes containing mRNA and nascent chains to the ER membrane. Thus, ribophorins must either directly participate in targeting or be so close to the targeting site that the antibodies sterically blocked this early phase of the translocation process.
منابع مشابه
Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction.
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bi...
متن کاملRegulation of ribosome detachment from the mammalian endoplasmic reticulum membrane.
In current models, protein translocation in the endoplasmic reticulum (ER) occurs in the context of two cycles, the signal recognition particle (SRP) cycle and the ribosome cycle. Both SRP and ribosomes bind to the ER membrane as a consequence of the targeting process of translocation. Whereas SRP release from the ER membrane is regulated by the GTPase activities of SRP and the SRP receptor, ri...
متن کاملThe principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum.pptx
182 10 APRIL 2015 • VOL 348 ISSUE 6231 sciencemag.org SCIENCE C ells must deliver the thousands of polypeptides they synthesize every minute to various specific subcellular locations. Precisely how this happens has been a topic of intense research, and some controversy, for the past 20 years, as critical components of the translation and translocation machineries—the ribosomes and the signal re...
متن کاملNascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum.
We show that, after removal of the nascent polypeptide-associated complex (NAC) from ribosome-associated nascent chains, ribosomes synthesizing proteins lacking signal peptides are efficiently targeted to the endoplasmic reticulum (ER) membrane. After this mistargeting, translocation across the ER membrane occurs, albeit less efficiently than for a nascent secretory polypeptide, perhaps because...
متن کاملDiscrete nascent chain lengths are required for the insertion of presecretory proteins into microsomal membranes
Ribosomes synthesizing nascent secretory proteins are targeted to the membrane by the signal recognition particle (SRP), a small ribonucleoprotein that binds to the signal peptide as it emerges from the ribosome. SRP arrests further elongation, causing ribosomes to stack behind the arrested ribosome. Upon interaction of SRP with its receptor on the ER membrane, the translation arrest is release...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 111 شماره
صفحات -
تاریخ انتشار 1990